ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08497
15
26

Rethinking "Risk" in Algorithmic Systems Through A Computational Narrative Analysis of Casenotes in Child-Welfare

16 February 2023
Devansh Saxena
Erin Moon
Aryan Chaurasia
Yixin Guan
Shion Guha
ArXivPDFHTML
Abstract

Risk assessment algorithms are being adopted by public sector agencies to make high-stakes decisions about human lives. Algorithms model "risk" based on individual client characteristics to identify clients most in need. However, this understanding of risk is primarily based on easily quantifiable risk factors that present an incomplete and biased perspective of clients. We conducted a computational narrative analysis of child-welfare casenotes and draw attention to deeper systemic risk factors that are hard to quantify but directly impact families and street-level decision-making. We found that beyond individual risk factors, the system itself poses a significant amount of risk where parents are over-surveilled by caseworkers and lack agency in decision-making processes. We also problematize the notion of risk as a static construct by highlighting the temporality and mediating effects of different risk, protective, systemic, and procedural factors. Finally, we draw caution against using casenotes in NLP-based systems by unpacking their limitations and biases embedded within them.

View on arXiv
Comments on this paper