ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09048
22
33

MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation

17 February 2023
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
    DiffM
ArXivPDFHTML
Abstract

This work introduces MiDi, a novel diffusion model for jointly generating molecular graphs and their corresponding 3D arrangement of atoms. Unlike existing methods that rely on predefined rules to determine molecular bonds based on the 3D conformation, MiDi offers an end-to-end differentiable approach that streamlines the molecule generation process. Our experimental results demonstrate the effectiveness of this approach. On the challenging GEOM-DRUGS dataset, MiDi generates 92% of stable molecules, against 6% for the previous EDM model that uses interatomic distances for bond prediction, and 40% using EDM followed by an algorithm that directly optimize bond orders for validity. Our code is available at github.com/cvignac/MiDi.

View on arXiv
Comments on this paper