ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09856
162
21
v1v2v3 (latest)

Knowledge-aware Bayesian Co-attention for Multimodal Emotion Recognition

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
20 February 2023
Zihan Zhao
Yu Wang
Yanfeng Wang
ArXiv (abs)PDFHTML
Abstract

Multimodal emotion recognition is a challenging research area that aims to fuse different modalities to predict human emotion. However, most existing models that are based on attention mechanisms have difficulty in learning emotionally relevant parts on their own. To solve this problem, we propose to incorporate external emotion-related knowledge in the co-attention based fusion of pre-trained models. To effectively incorporate this knowledge, we enhance the co-attention model with a Bayesian attention module (BAM) where a prior distribution is estimated using the emotion-related knowledge. Experimental results on the IEMOCAP dataset show that the proposed approach can outperform several state-of-the-art approaches by at least 0.7% unweighted accuracy (UA).

View on arXiv
Comments on this paper