ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.10144
16
3

Stabilising and accelerating light gated recurrent units for automatic speech recognition

16 February 2023
Adel Moumen
Titouan Parcollet
ArXivPDFHTML
Abstract

The light gated recurrent units (Li-GRU) is well-known for achieving impressive results in automatic speech recognition (ASR) tasks while being lighter and faster to train than a standard gated recurrent units (GRU). However, the unbounded nature of its rectified linear unit on the candidate recurrent gate induces an important gradient exploding phenomenon disrupting the training process and preventing it from being applied to famous datasets. In this paper, we theoretically and empirically derive the necessary conditions for its stability as well as engineering mechanisms to speed up by a factor of five its training time, hence introducing a novel version of this architecture named SLi-GRU. Then, we evaluate its performance both on a toy task illustrating its newly acquired capabilities and a set of three different ASR datasets demonstrating lower word error rates compared to more complex recurrent neural networks.

View on arXiv
Comments on this paper