ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11152
16
8

Multi-Message Shuffled Privacy in Federated Learning

22 February 2023
Antonious M. Girgis
Suhas Diggavi
    FedML
ArXivPDFHTML
Abstract

We study differentially private distributed optimization under communication constraints. A server using SGD for optimization aggregates the client-side local gradients for model updates using distributed mean estimation (DME). We develop a communication-efficient private DME, using the recently developed multi-message shuffled (MMS) privacy framework. We analyze our proposed DME scheme to show that it achieves the order-optimal privacy-communication-performance tradeoff resolving an open question in [1], whether the shuffled models can improve the tradeoff obtained in Secure Aggregation. This also resolves an open question on the optimal trade-off for private vector sum in the MMS model. We achieve it through a novel privacy mechanism that non-uniformly allocates privacy at different resolutions of the local gradient vectors. These results are directly applied to give guarantees on private distributed learning algorithms using this for private gradient aggregation iteratively. We also numerically evaluate the private DME algorithms.

View on arXiv
Comments on this paper