ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11205
9
7

Contrastive Representation Learning for Acoustic Parameter Estimation

22 February 2023
Philipp Götz
Cagdas Tuna
Andreas Walther
Emanuel Habets
    SSL
ArXivPDFHTML
Abstract

A study is presented in which a contrastive learning approach is used to extract low-dimensional representations of the acoustic environment from single-channel, reverberant speech signals. Convolution of room impulse responses (RIRs) with anechoic source signals is leveraged as a data augmentation technique that offers considerable flexibility in the design of the upstream task. We evaluate the embeddings across three different downstream tasks, which include the regression of acoustic parameters reverberation time RT60 and clarity index C50, and the classification into small and large rooms. We demonstrate that the learned representations generalize well to unseen data and perform similarly to a fully-supervised baseline.

View on arXiv
Comments on this paper