ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11981
18
13

Unsupervised Noise adaptation using Data Simulation

23 February 2023
Chen Chen
Yuchen Hu
Heqing Zou
Linhui Sun
Chng Eng Siong
ArXivPDFHTML
Abstract

Deep neural network based speech enhancement approaches aim to learn a noisy-to-clean transformation using a supervised learning paradigm. However, such a trained-well transformation is vulnerable to unseen noises that are not included in training set. In this work, we focus on the unsupervised noise adaptation problem in speech enhancement, where the ground truth of target domain data is completely unavailable. Specifically, we propose a generative adversarial network based method to efficiently learn a converse clean-to-noisy transformation using a few minutes of unpaired target domain data. Then this transformation is utilized to generate sufficient simulated data for domain adaptation of the enhancement model. Experimental results show that our method effectively mitigates the domain mismatch between training and test sets, and surpasses the best baseline by a large margin.

View on arXiv
Comments on this paper