ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.12248
4
28

Learning Visual Representations via Language-Guided Sampling

23 February 2023
Mohamed El Banani
Karan Desai
Justin Johnson
    SSL
    VLM
ArXivPDFHTML
Abstract

Although an object may appear in numerous contexts, we often describe it in a limited number of ways. Language allows us to abstract away visual variation to represent and communicate concepts. Building on this intuition, we propose an alternative approach to visual representation learning: using language similarity to sample semantically similar image pairs for contrastive learning. Our approach diverges from image-based contrastive learning by sampling view pairs using language similarity instead of hand-crafted augmentations or learned clusters. Our approach also differs from image-text contrastive learning by relying on pre-trained language models to guide the learning rather than directly minimizing a cross-modal loss. Through a series of experiments, we show that language-guided learning yields better features than image-based and image-text representation learning approaches.

View on arXiv
Comments on this paper