ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.12391
9
3

PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS

24 February 2023
Junhyeok Lee
Wonbin Jung
Hyunjae Cho
Jaeyeon Kim
Jaehwan Kim
ArXivPDFHTML
Abstract

Previous pitch-controllable text-to-speech (TTS) models rely on directly modeling fundamental frequency, leading to low variance in synthesized speech. To address this issue, we propose PITS, an end-to-end pitch-controllable TTS model that utilizes variational inference to model pitch. Based on VITS, PITS incorporates the Yingram encoder, the Yingram decoder, and adversarial training of pitch-shifted synthesis to achieve pitch-controllability. Experiments demonstrate that PITS generates high-quality speech that is indistinguishable from ground truth speech and has high pitch-controllability without quality degradation. Code, audio samples, and demo are available at https://github.com/anonymous-pits/pits.

View on arXiv
Comments on this paper