ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.12456
17
6

Logarithmic Switching Cost in Reinforcement Learning beyond Linear MDPs

24 February 2023
Dan Qiao
Ming Yin
Yu-Xiang Wang
ArXivPDFHTML
Abstract

In many real-life reinforcement learning (RL) problems, deploying new policies is costly. In those scenarios, algorithms must solve exploration (which requires adaptivity) while switching the deployed policy sparsely (which limits adaptivity). In this paper, we go beyond the existing state-of-the-art on this problem that focused on linear Markov Decision Processes (MDPs) by considering linear Bellman-complete MDPs with low inherent Bellman error. We propose the ELEANOR-LowSwitching algorithm that achieves the near-optimal regret with a switching cost logarithmic in the number of episodes and linear in the time-horizon HHH and feature dimension ddd. We also prove a lower bound proportional to dHdHdH among all algorithms with sublinear regret. In addition, we show the ``doubling trick'' used in ELEANOR-LowSwitching can be further leveraged for the generalized linear function approximation, under which we design a sample-efficient algorithm with near-optimal switching cost.

View on arXiv
Comments on this paper