ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.12931
26
24

CATNIPS: Collision Avoidance Through Neural Implicit Probabilistic Scenes

24 February 2023
Timothy Chen
Preston Culbertson
Mac Schwager
ArXivPDFHTML
Abstract

We introduce a transformation of a Neural Radiance Field (NeRF) to an equivalent Poisson Point Process (PPP). This PPP transformation allows for rigorous quantification of uncertainty in NeRFs, in particular, for computing collision probabilities for a robot navigating through a NeRF environment. The PPP is a generalization of a probabilistic occupancy grid to the continuous volume and is fundamental to the volumetric ray-tracing model underlying radiance fields. Building upon this PPP representation, we present a chance-constrained trajectory optimization method for safe robot navigation in NeRFs. Our method relies on a voxel representation called the Probabilistic Unsafe Robot Region (PURR) that spatially fuses the chance constraint with the NeRF model to facilitate fast trajectory optimization. We then combine a graph-based search with a spline-based trajectory optimization to yield robot trajectories through the NeRF that are guaranteed to satisfy a user-specific collision probability. We validate our chance constrained planning method through simulations and hardware experiments, showing superior performance compared to prior works on trajectory planning in NeRF environments. Our codebase can be found at https://github.com/chengine/catnips, and videos can be found on our project page (https://chengine.github.io/catnips).

View on arXiv
Comments on this paper