ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.13765
14
42

Self Correspondence Distillation for End-to-End Weakly-Supervised Semantic Segmentation

27 February 2023
Rongtao Xu
Changwei Wang
Jiaxi Sun
Shibiao Xu
Weiliang Meng
Xiaopeng Zhang
ArXivPDFHTML
Abstract

Efficiently training accurate deep models for weakly supervised semantic segmentation (WSSS) with image-level labels is challenging and important. Recently, end-to-end WSSS methods have become the focus of research due to their high training efficiency. However, current methods suffer from insufficient extraction of comprehensive semantic information, resulting in low-quality pseudo-labels and sub-optimal solutions for end-to-end WSSS. To this end, we propose a simple and novel Self Correspondence Distillation (SCD) method to refine pseudo-labels without introducing external supervision. Our SCD enables the network to utilize feature correspondence derived from itself as a distillation target, which can enhance the network's feature learning process by complementing semantic information. In addition, to further improve the segmentation accuracy, we design a Variation-aware Refine Module to enhance the local consistency of pseudo-labels by computing pixel-level variation. Finally, we present an efficient end-to-end Transformer-based framework (TSCD) via SCD and Variation-aware Refine Module for the accurate WSSS task. Extensive experiments on the PASCAL VOC 2012 and MS COCO 2014 datasets demonstrate that our method significantly outperforms other state-of-the-art methods. Our code is available at {https://github.com/Rongtao-Xu/RepresentationLearning/tree/main/SCD-AAAI2023}.

View on arXiv
Comments on this paper