ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14696
19
5

Dissolving Is Amplifying: Towards Fine-Grained Anomaly Detection

28 February 2023
Jian Shi
Pengyi Zhang
Ni Zhang
Hakim Ghazzai
Y. Massoud
    MedIm
ArXivPDFHTML
Abstract

Medical imaging often contains critical fine-grained features, such as tumors or hemorrhages, crucial for diagnosis yet potentially too subtle for detection with conventional methods. In this paper, we introduce \textit{DIA}, dissolving is amplifying. DIA is a fine-grained anomaly detection framework for medical images. First, we introduce \textit{dissolving transformations}. We employ diffusion with a generative diffusion model as a dedicated feature-aware denoiser. Applying diffusion to medical images in a certain manner can remove or diminish fine-grained discriminative features. Second, we introduce an \textit{amplifying framework} based on contrastive learning to learn a semantically meaningful representation of medical images in a self-supervised manner, with a focus on fine-grained features. The amplifying framework contrasts additional pairs of images with and without dissolving transformations applied and thereby emphasizes the dissolved fine-grained features. DIA significantly improves the medical anomaly detection performance with around 18.40\% AUC boost against the baseline method and achieves an overall SOTA against other benchmark methods. Our code is available at \url{https://github.com/shijianjian/DIA.git}.

View on arXiv
Comments on this paper