ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01370
27
5

Non asymptotic analysis of Adaptive stochastic gradient algorithms and applications

1 March 2023
Antoine Godichon-Baggioni
Pierre Tarrago
ArXivPDFHTML
Abstract

In stochastic optimization, a common tool to deal sequentially with large sample is to consider the well-known stochastic gradient algorithm. Nevertheless, since the stepsequence is the same for each direction, this can lead to bad results in practice in case of ill-conditionned problem. To overcome this, adaptive gradient algorithms such that Adagrad or Stochastic Newton algorithms should be prefered. This paper is devoted to the non asymptotic analyis of these adaptive gradient algorithms for strongly convex objective. All the theoretical results will be adapted to linear regression and regularized generalized linear model for both Adagrad and Stochastic Newton algorithms.

View on arXiv
Comments on this paper