ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01510
11
5

INO at Factify 2: Structure Coherence based Multi-Modal Fact Verification

2 March 2023
Yinuo Zhang
Zhulin Tao
Xi Wang
Tongyue Wang
ArXivPDFHTML
Abstract

This paper describes our approach to the multi-modal fact verification (FACTIFY) challenge at AAAI2023. In recent years, with the widespread use of social media, fake news can spread rapidly and negatively impact social security. Automatic claim verification becomes more and more crucial to combat fake news. In fact verification involving multiple modal data, there should be a structural coherence between claim and document. Therefore, we proposed a structure coherence-based multi-modal fact verification scheme to classify fake news. Our structure coherence includes the following four aspects: sentence length, vocabulary similarity, semantic similarity, and image similarity. Specifically, CLIP and Sentence BERT are combined to extract text features, and ResNet50 is used to extract image features. In addition, we also extract the length of the text as well as the lexical similarity. Then the features were concatenated and passed through the random forest classifier. Finally, our weighted average F1 score has reached 0.8079, achieving 2nd place in FACTIFY2.

View on arXiv
Comments on this paper