ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02014
22
7

Summary Statistic Privacy in Data Sharing

3 March 2023
Zinan Lin
Shuaiqi Wang
Vyas Sekar
Giulia Fanti
ArXivPDFHTML
Abstract

We study a setting where a data holder wishes to share data with a receiver, without revealing certain summary statistics of the data distribution (e.g., mean, standard deviation). It achieves this by passing the data through a randomization mechanism. We propose summary statistic privacy, a metric for quantifying the privacy risk of such a mechanism based on the worst-case probability of an adversary guessing the distributional secret within some threshold. Defining distortion as a worst-case Wasserstein-1 distance between the real and released data, we prove lower bounds on the tradeoff between privacy and distortion. We then propose a class of quantization mechanisms that can be adapted to different data distributions. We show that the quantization mechanism's privacy-distortion tradeoff matches our lower bounds under certain regimes, up to small constant factors. Finally, we demonstrate on real-world datasets that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms.

View on arXiv
Comments on this paper