ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02206
19
0

Domain Specific Question Answering Over Knowledge Graphs Using Logical Programming and Large Language Models

3 March 2023
Navid Madani
Rohini Srihari
K. Joseph
ArXivPDFHTML
Abstract

Answering questions over domain-specific graphs requires a tailored approach due to the limited number of relations and the specific nature of the domain. Our approach integrates classic logical programming languages into large language models (LLMs), enabling the utilization of logical reasoning capabilities to tackle the KGQA task. By representing the questions as Prolog queries, which are readable and near close to natural language in representation, we facilitate the generation of programmatically derived answers. To validate the effectiveness of our approach, we evaluate it using a well-known benchmark dataset, MetaQA. Our experimental results demonstrate that our method achieves accurate identification of correct answer entities for all test questions, even when trained on a small fraction of annotated data. Overall, our work presents a promising approach to addressing question answering over domain-specific graphs, offering an explainable and robust solution by incorporating logical programming languages.

View on arXiv
Comments on this paper