ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02370
17
2

Self-Supervised Learning for Place Representation Generalization across Appearance Changes

4 March 2023
M. A. Musallam
Vincent Gaudillière
Djamila Aouada
    SSL
ArXivPDFHTML
Abstract

Visual place recognition is a key to unlocking spatial navigation for animals, humans and robots. While state-of-the-art approaches are trained in a supervised manner and therefore hardly capture the information needed for generalizing to unusual conditions, we argue that self-supervised learning may help abstracting the place representation so that it can be foreseen, irrespective of the conditions. More precisely, in this paper, we investigate learning features that are robust to appearance modifications while sensitive to geometric transformations in a self-supervised manner. This dual-purpose training is made possible by combining the two self-supervision main paradigms, \textit{i.e.} contrastive and predictive learning. Our results on standard benchmarks reveal that jointly learning such appearance-robust and geometry-sensitive image descriptors leads to competitive visual place recognition results across adverse seasonal and illumination conditions, without requiring any human-annotated labels.

View on arXiv
Comments on this paper