ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02402
61
0
v1v2v3 (latest)

Asymptotic theory for extreme value generalized additive models

4 March 2023
Takuma Yoshida
ArXiv (abs)PDFHTML
Abstract

The classical approach to analyzing extreme value data is the generalized Pareto distribution (GPD). When the GPD is used to explain a target variable with the large dimension of covariates, the shape and scale function of covariates included in GPD are sometimes modeled using the generalized additive models (GAM). In contrast to many results of application, there are no theoretical results on the hybrid technique of GAM and GPD, which motivates us to develop its asymptotic theory. We provide the rate of convergence of the estimator of shape and scale functions, as well as its local asymptotic normality.

View on arXiv
Comments on this paper