ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02939
26
7

FoundationTTS: Text-to-Speech for ASR Customization with Generative Language Model

6 March 2023
Rui Xue
Yanqing Liu
Lei He
Xuejiao Tan
Linquan Liu
Ed Lin
Sheng Zhao
ArXivPDFHTML
Abstract

Neural text-to-speech (TTS) generally consists of cascaded architecture with separately optimized acoustic model and vocoder, or end-to-end architecture with continuous mel-spectrograms or self-extracted speech frames as the intermediate representations to bridge acoustic model and vocoder, which suffers from two limitations: 1) the continuous acoustic frames are hard to predict with phoneme only, and acoustic information like duration or pitch is also needed to solve the one-to-many problem, which is not easy to scale on large scale and noise datasets; 2) to achieve diverse speech output based on continuous speech features, complex VAE or flow-based models are usually required. In this paper, we propose FoundationTTS, a new speech synthesis system with a neural audio codec for discrete speech token extraction and waveform reconstruction and a large language model for discrete token generation from linguistic (phoneme) tokens. Specifically, 1) we propose a hierarchical codec network based on vector-quantized auto-encoders with adversarial training (VQ-GAN), which first extracts continuous frame-level speech representations with fine-grained codec, and extracts a discrete token from each continuous speech frame with coarse-grained codec; 2) we jointly optimize speech token, linguistic tokens, speaker token together with a large language model and predict the discrete speech tokens autoregressively. Experiments show that FoundationTTS achieves a MOS gain of +0.14 compared to the baseline system. In ASR customization tasks, our method achieves 7.09\% and 10.35\% WERR respectively over two strong customized ASR baselines.

View on arXiv
Comments on this paper