ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04038
47
21
v1v2 (latest)

Root Cause Identification for Collective Anomalies in Time Series given an Acyclic Summary Causal Graph with Loops

7 March 2023
Charles K. Assaad
Imad Ez-zejjari
Lei Zan
    AI4TS
ArXiv (abs)PDFHTML
Abstract

This paper presents an approach for identifying the root causes of collective anomalies given observational time series and an acyclic summary causal graph which depicts an abstraction of causal relations present in a dynamic system at its normal regime. The paper first shows how the problem of root cause identification can be divided into many independent subproblems by grouping related anomalies using d-separation. Further, it shows how, under this setting, some root causes can be found directly from the graph and from the time of appearance of anomalies. Finally, it shows, how the rest of the root causes can be found by comparing direct causal effects in the normal and in the anomalous regime. To this end, temporal adaptations of the back-door and the single-door criterions are introduced. Extensive experiments conducted on both simulated and real-world datasets demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper