ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04053
13
0

Describe me an Aucklet: Generating Grounded Perceptual Category Descriptions

7 March 2023
Bill Noble
N. Ilinykh
ArXivPDFHTML
Abstract

Human speakers can generate descriptions of perceptual concepts, abstracted from the instance-level. Moreover, such descriptions can be used by other speakers to learn provisional representations of those concepts. Learning and using abstract perceptual concepts is under-investigated in the language-and-vision field. The problem is also highly relevant to the field of representation learning in multi-modal NLP. In this paper, we introduce a framework for testing category-level perceptual grounding in multi-modal language models. In particular, we train separate neural networks to generate and interpret descriptions of visual categories. We measure the communicative success of the two models with the zero-shot classification performance of the interpretation model, which we argue is an indicator of perceptual grounding. Using this framework, we compare the performance of prototype- and exemplar-based representations. Finally, we show that communicative success exposes performance issues in the generation model, not captured by traditional intrinsic NLG evaluation metrics, and argue that these issues stem from a failure to properly ground language in vision at the category level.

View on arXiv
Comments on this paper