ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04218
14
3

Deep Occupancy-Predictive Representations for Autonomous Driving

7 March 2023
Eivind Meyer
Lars Frederik Peiss
Matthias Althoff
ArXivPDFHTML
Abstract

Manually specifying features that capture the diversity in traffic environments is impractical. Consequently, learning-based agents cannot realize their full potential as neural motion planners for autonomous vehicles. Instead, this work proposes to learn which features are task-relevant. Given its immediate relevance to motion planning, our proposed architecture encodes the probabilistic occupancy map as a proxy for obtaining pre-trained state representations. By leveraging a map-aware graph formulation of the environment, our agent-centric encoder generalizes to arbitrary road networks and traffic situations. We show that our approach significantly improves the downstream performance of a reinforcement learning agent operating in urban traffic environments.

View on arXiv
Comments on this paper