ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04589
12
1

FCN+: Global Receptive Convolution Makes FCN Great Again

8 March 2023
Zhongying Deng
Xiaoyu Ren
Jin Ye
Junjun He
Dongxu Yang
ArXivPDFHTML
Abstract

Fully convolutional network (FCN) is a seminal work for semantic segmentation. However, due to its limited receptive field, FCN cannot effectively capture global context information which is vital for semantic segmentation. As a result, it is beaten by state-of-the-art methods that leverage different filter sizes for larger receptive fields. However, such a strategy usually introduces more parameters and increases the computational cost. In this paper, we propose a novel global receptive convolution (GRC) to effectively increase the receptive field of FCN for context information extraction, which results in an improved FCN termed FCN+. The GRC provides the global receptive field for convolution without introducing any extra learnable parameters. The motivation of GRC is that different channels of a convolutional filter can have different grid sampling locations across the whole input feature map. Specifically, the GRC first divides the channels of the filter into two groups. The grid sampling locations of the first group are shifted to different spatial coordinates across the whole feature map, according to their channel indexes. This can help the convolutional filter capture the global context information. The grid sampling location of the second group remains unchanged to keep the original location information. By convolving using these two groups, the GRC can integrate the global context into the original location information of each pixel for better dense prediction results. With the GRC built in, FCN+ can achieve comparable performance to state-of-the-art methods for semantic segmentation tasks, as verified on PASCAL VOC 2012, Cityscapes, and ADE20K. Our code will be released atthis https URL.

View on arXiv
@article{ren2025_2303.04589,
  title={ FCN+: Global Receptive Convolution Makes FCN Great Again },
  author={ Xiaoyu Ren and Zhongying Deng and Jin Ye and Junjun He and Dongxu Yang },
  journal={arXiv preprint arXiv:2303.04589},
  year={ 2025 }
}
Comments on this paper