ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05134
6
5

hierarchical network with decoupled knowledge distillation for speech emotion recognition

9 March 2023
Ziping Zhao
Haiquan Wang
Haishuai Wang
Bjorn Schuller
ArXivPDFHTML
Abstract

The goal of Speech Emotion Recognition (SER) is to enable computers to recognize the emotion category of a given utterance in the same way that humans do. The accuracy of SER is strongly dependent on the validity of the utterance-level representation obtained by the model. Nevertheless, the ``dark knowledge" carried by non-target classes is always ignored by previous studies. In this paper, we propose a hierarchical network, called DKDFMH, which employs decoupled knowledge distillation in a deep convolutional neural network with a fused multi-head attention mechanism. Our approach applies logit distillation to obtain higher-level semantic features from different scales of attention sets and delve into the knowledge carried by non-target classes, thus guiding the model to focus more on the differences between sentiment features. To validate the effectiveness of our model, we conducted experiments on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset. We achieved competitive performance, with 79.1% weighted accuracy (WA) and 77.1% unweighted accuracy (UA). To the best of our knowledge, this is the first time since 2015 that logit distillation has been returned to state-of-the-art status.

View on arXiv
Comments on this paper