ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05161
26
7

Inversion dynamics of class manifolds in deep learning reveals tradeoffs underlying generalisation

9 March 2023
Simone Ciceri
Lorenzo Cassani
Matteo Osella
P. Rotondo
P. Pizzochero
M. Gherardi
ArXivPDFHTML
Abstract

To achieve near-zero training error in a classification problem, the layers of a feed-forward network have to disentangle the manifolds of data points with different labels, to facilitate the discrimination. However, excessive class separation can bring to overfitting since good generalisation requires learning invariant features, which involve some level of entanglement. We report on numerical experiments showing how the optimisation dynamics finds representations that balance these opposing tendencies with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across data sets and architectures) increases the class entanglement.The training error at the inversion is stable under subsampling, and across network initialisations and optimisers, which characterises it as a property solely of the data structure and (very weakly) of the architecture. The inversion is the manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set, coined ``stragglers'', particularly influential for generalisation.

View on arXiv
Comments on this paper