ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05396
11
2

Bounding the Probabilities of Benefit and Harm Through Sensitivity Parameters and Proxies

8 March 2023
J. Peña
ArXivPDFHTML
Abstract

We present two methods for bounding the probabilities of benefit and harm under unmeasured confounding. The first method computes the (upper or lower) bound of either probability as a function of the observed data distribution and two intuitive sensitivity parameters which, then, can be presented to the analyst as a 2-D plot to assist her in decision making. The second method assumes the existence of a measured nondifferential proxy (i.e., direct effect) of the unmeasured confounder. Using this proxy, tighter bounds than the existing ones can be derived from just the observed data distribution.

View on arXiv
Comments on this paper