13
2

Informative co-data learning for high-dimensional Horseshoe regression

Abstract

High-dimensional data often arise from clinical genomics research to infer relevant predictors of a particular trait. A way to improve the predictive performance is to include information on the predictors derived from prior knowledge or previous studies. Such information is also referred to as ``co-data''. To this aim, we develop a novel Bayesian model for including co-data in a high-dimensional regression framework, called Informative Horseshoe regression (infHS). The proposed approach regresses the prior variances of the regression parameters on the co-data variables, improving variable selection and prediction. We implement both a Gibbs sampler and a Variational approximation algorithm. The former is suited for applications of moderate dimensions which, besides prediction, target posterior inference, whereas the computational efficiency of the latter allows handling a very large number of variables. We show the benefits from including co-data with a simulation study. Eventually, we demonstrate that infHS outperforms competing approaches for two genomics applications.

View on arXiv
Comments on this paper