ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05904
11
6

Deep Anomaly Detection on Tennessee Eastman Process Data

10 March 2023
Fabian Hartung
Billy Joe Franks
Tobias Michels
Dennis Wagner
Philipp Liznerski
Steffen Reithermann
Sophie Fellenz
F. Jirasek
Maja R. Rudolph
Daniel Neider
Heike Leitte
Chen Song
Benjamin Kloepper
Stephan Mandt
Michael Bortz
Jakob Burger
Hans Hasse
Marius Kloft
ArXivPDFHTML
Abstract

This paper provides the first comprehensive evaluation and analysis of modern (deep-learning) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, which has been a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications.

View on arXiv
Comments on this paper