ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06173
17
31

Unifying Grokking and Double Descent

10 March 2023
Peter W. Battaglia
David Raposo
Kelsey
ArXivPDFHTML
Abstract

A principled understanding of generalization in deep learning may require unifying disparate observations under a single conceptual framework. Previous work has studied \emph{grokking}, a training dynamic in which a sustained period of near-perfect training performance and near-chance test performance is eventually followed by generalization, as well as the superficially similar \emph{double descent}. These topics have so far been studied in isolation. We hypothesize that grokking and double descent can be understood as instances of the same learning dynamics within a framework of pattern learning speeds. We propose that this framework also applies when varying model capacity instead of optimization steps, and provide the first demonstration of model-wise grokking.

View on arXiv
Comments on this paper