TaylorAECNet: A Taylor Style Neural Network for Full-Band Echo
Cancellation
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Abstract
This paper describes aecX team's entry to the ICASSP 2023 acoustic echo cancellation (AEC) challenge. Our system consists of an adaptive filter and a proposed full-band Taylor-style acoustic echo cancellation neural network (TaylorAECNet) as a post-filter. Specifically, we leverage the recent advances in Taylor expansion based decoupling-style interpretable speech enhancement and explore its feasibility in the AEC task. Our TaylorAECNet based approach achieves an overall mean opinion score (MOS) of 4.241, a word accuracy (WAcc) ratio of 0.767, and ranks 5th in the non-personalized track (track 1).
View on arXivComments on this paper
