ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06507
14
1

Towards Consistent Batch State Estimation Using a Time-Correlated Measurement Noise Model

11 March 2023
David J. Yoon
T. Barfoot
ArXivPDFHTML
Abstract

In this paper, we present an algorithm for learning time-correlated measurement covariances for application in batch state estimation. We parameterize the inverse measurement covariance matrix to be block-banded, which conveniently factorizes and results in a computationally efficient approach for correlating measurements across the entire trajectory. We train our covariance model through supervised learning using the groundtruth trajectory. In applications where the measurements are time-correlated, we demonstrate improved performance in both the mean posterior estimate and the covariance (i.e., improved estimator consistency). We use an experimental dataset collected using a mobile robot equipped with a laser rangefinder to demonstrate the improvement in performance. We also verify estimator consistency in a controlled simulation using a statistical test over several trials.

View on arXiv
Comments on this paper