ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06691
6
1

ALIST: Associative Logic for Inference, Storage and Transfer. A Lingua Franca for Inference on the Web

12 March 2023
Kwabena Nuamah
A. Bundy
ArXivPDFHTML
Abstract

Recent developments in support for constructing knowledge graphs have led to a rapid rise in their creation both on the Web and within organisations. Added to existing sources of data, including relational databases, APIs, etc., there is a strong demand for techniques to query these diverse sources of knowledge. While formal query languages, such as SPARQL, exist for querying some knowledge graphs, users are required to know which knowledge graphs they need to query and the unique resource identifiers of the resources they need. Although alternative techniques in neural information retrieval embed the content of knowledge graphs in vector spaces, they fail to provide the representation and query expressivity needed (e.g. inability to handle non-trivial aggregation functions such as regression). We believe that a lingua franca, i.e. a formalism, that enables such representational flexibility will increase the ability of intelligent automated agents to combine diverse data sources by inference. Our work proposes a flexible representation (alists) to support intelligent federated querying of diverse knowledge sources. Our contribution includes (1) a formalism that abstracts the representation of queries from the specific query language of a knowledge graph; (2) a representation to dynamically curate data and functions (operations) to perform non-trivial inference over diverse knowledge sources; (3) a demonstration of the expressiveness of alists to represent the diversity of representational formalisms, including SPARQL queries, and more generally first-order logic expressions.

View on arXiv
Comments on this paper