ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06982
16
4

Analysing the Masked predictive coding training criterion for pre-training a Speech Representation Model

13 March 2023
Hemant Yadav
Sunayana Sitaram
R. Shah
    SSL
ArXivPDFHTML
Abstract

Recent developments in pre-trained speech representation utilizing self-supervised learning (SSL) have yielded exceptional results on a variety of downstream tasks. One such technique, known as masked predictive coding (MPC), has been employed by some of the most high-performing models. In this study, we investigate the impact of MPC loss on the type of information learnt at various layers in the HuBERT model, using nine probing tasks. Our findings indicate that the amount of content information learned at various layers of the HuBERT model has a positive correlation to the MPC loss. Additionally, it is also observed that any speaker-related information learned at intermediate layers of the model, is an indirect consequence of the learning process, and therefore cannot be controlled using the MPC loss. These findings may serve as inspiration for further research in the speech community, specifically in the development of new pre-training tasks or the exploration of new pre-training criterion's that directly preserves both speaker and content information at various layers of a learnt model.

View on arXiv
Comments on this paper