ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08815
20
37

Lane Graph as Path: Continuity-preserving Path-wise Modeling for Online Lane Graph Construction

15 March 2023
Bencheng Liao
Shaoyu Chen
Bo Jiang
Tianheng Cheng
Qian Zhang
Wenyu Liu
Chang Huang
Xinggang Wang
    GNN
ArXivPDFHTML
Abstract

Online lane graph construction is a promising but challenging task in autonomous driving. Previous methods usually model the lane graph at the pixel or piece level, and recover the lane graph by pixel-wise or piece-wise connection, which breaks down the continuity of the lane. Human drivers focus on and drive along the continuous and complete paths instead of considering lane pieces. Autonomous vehicles also require path-specific guidance from lane graph for trajectory planning. We argue that the path, which indicates the traffic flow, is the primitive of the lane graph. Motivated by this, we propose to model the lane graph in a novel path-wise manner, which well preserves the continuity of the lane and encodes traffic information for planning. We present a path-based online lane graph construction method, termed LaneGAP, which end-to-end learns the path and recovers the lane graph via a Path2Graph algorithm. We qualitatively and quantitatively demonstrate the superiority of LaneGAP over conventional pixel-based and piece-based methods on challenging nuScenes and Argoverse2 datasets. Abundant visualizations show LaneGAP can cope with diverse traffic conditions. Code and models will be released at \url{https://github.com/hustvl/LaneGAP} for facilitating future research.

View on arXiv
Comments on this paper