ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08944
34
0

Agnostic Multi-Robust Learning Using ERM

15 March 2023
Saba Ahmadi
Avrim Blum
Omar Montasser
Kevin Stangl
    AAML
    OOD
ArXivPDFHTML
Abstract

A fundamental problem in robust learning is asymmetry: a learner needs to correctly classify every one of exponentially-many perturbations that an adversary might make to a test-time natural example. In contrast, the attacker only needs to find one successful perturbation. Xiang et al.[2022] proposed an algorithm that in the context of patch attacks for image classification, reduces the effective number of perturbations from an exponential to a polynomial number of perturbations and learns using an ERM oracle. However, to achieve its guarantee, their algorithm requires the natural examples to be robustly realizable. This prompts the natural question; can we extend their approach to the non-robustly-realizable case where there is no classifier with zero robust error? Our first contribution is to answer this question affirmatively by reducing this problem to a setting in which an algorithm proposed by Feige et al.[2015] can be applied, and in the process extend their guarantees. Next, we extend our results to a multi-group setting and introduce a novel agnostic multi-robust learning problem where the goal is to learn a predictor that achieves low robust loss on a (potentially) rich collection of subgroups.

View on arXiv
Comments on this paper