ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08999
16
8

A High-Performance Accelerator for Super-Resolution Processing on Embedded GPU

16 March 2023
W. Zhao
Qi Sun
Yang Bai
Wenbo Li
Haisheng Zheng
Bei Yu
Martin D. F. Wong
    SupR
ArXivPDFHTML
Abstract

Recent years have witnessed impressive progress in super-resolution (SR) processing. However, its real-time inference requirement sets a challenge not only for the model design but also for the on-chip implementation. In this paper, we implement a full-stack SR acceleration framework on embedded GPU devices. The special dictionary learning algorithm used in SR models was analyzed in detail and accelerated via a novel dictionary selective strategy. Besides, the hardware programming architecture together with the model structure is analyzed to guide the optimal design of computation kernels to minimize the inference latency under the resource constraints. With these novel techniques, the communication and computation bottlenecks in the deep dictionary learning-based SR models are tackled perfectly. The experiments on the edge embedded NVIDIA NX and 2080Ti show that our method outperforms the state-of-the-art NVIDIA TensorRT significantly, and can achieve real-time performance.

View on arXiv
Comments on this paper