ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09128
11
18

Exploring Distributional Shifts in Large Language Models for Code Analysis

16 March 2023
Shushan Arakelyan
Rocktim Jyoti Das
Yi Mao
Xiang Ren
    ALM
ArXivPDFHTML
Abstract

We systematically study how three large language models with code capabilities - CodeT5, Codex, and ChatGPT - generalize to out-of-domain data. We consider two fundamental applications - code summarization, and code generation. We split data into domains following its natural boundaries - by an organization, by a project, and by a module within the software project. We establish that samples from each new domain present all the models with a significant challenge of distribution shift. We study how established methods adapt models to better generalize to new domains. Our experiments show that while multitask learning alone is a reasonable baseline, combining it with few-shot finetuning on examples retrieved from training data can achieve very strong performance. Moreover, this solution can outperform direct finetuning for very low-data scenarios. Finally, we consider variations of this approach to create a more broadly applicable method to adapt to multiple domains at once. We find that for code generation, a model adapted to multiple domains simultaneously performs on par with those adapted to a single domain

View on arXiv
Comments on this paper