ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09184
8
0

Block-wise Bit-Compression of Transformer-based Models

16 March 2023
Gaochen Dong
W. Chen
ArXivPDFHTML
Abstract

With the popularity of the recent Transformer-based models represented by BERT, GPT-3 and ChatGPT, there has been state-of-the-art performance in a range of natural language processing tasks. However, the massive computations, huge memory footprint, and thus high latency of Transformer-based models is an inevitable challenge for the cloud with high real-time requirement. To tackle the issue, we propose BBCT, a method of block-wise bit-compression for transformer without retraining. Our method achieves more fine-grained compression of the whole transformer, including embedding, matrix multiplication, GELU, softmax, layer normalization, and all the intermediate results. As a case, we compress an efficient BERT with the method of BBCT. Our benchmark test results on General Language Understanding Evaluation (GLUE) show that BBCT can achieve less than 1% accuracy drop in most tasks.

View on arXiv
Comments on this paper