ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09383
11
10

Unifying Top-down and Bottom-up Scanpath Prediction Using Transformers

16 March 2023
Zhibo Yang
Sounak Mondal
Seoyoung Ahn
Ruoyu Xue
G. Zelinsky
Minh Hoai
Dimitris Samaras
ArXivPDFHTML
Abstract

Most models of visual attention aim at predicting either top-down or bottom-up control, as studied using different visual search and free-viewing tasks. In this paper we propose the Human Attention Transformer (HAT), a single model that predicts both forms of attention control. HAT uses a novel transformer-based architecture and a simplified foveated retina that collectively create a spatio-temporal awareness akin to the dynamic visual working memory of humans. HAT not only establishes a new state-of-the-art in predicting the scanpath of fixations made during target-present and target-absent visual search and ``taskless'' free viewing, but also makes human gaze behavior interpretable. Unlike previous methods that rely on a coarse grid of fixation cells and experience information loss due to fixation discretization, HAT features a sequential dense prediction architecture and outputs a dense heatmap for each fixation, thus avoiding discretizing fixations. HAT sets a new standard in computational attention, which emphasizes effectiveness, generality, and interpretability. HAT's demonstrated scope and applicability will likely inspire the development of new attention models that can better predict human behavior in various attention-demanding scenarios. Code is available at https://github.com/cvlab-stonybrook/HAT.

View on arXiv
Comments on this paper