ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09780
16
4

Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox

17 March 2023
Yubiao Yue
Zhenzhang Li
Xinyue Zhang
Jia-lin Xu
Huacong Ye
Fan Zhang
Jinbao Liu
Yongqian Li
ArXivPDFHTML
Abstract

Swift and accurate diagnosis for earlier-stage monkeypox (mpox) patients is crucial to avoiding its spread. However, the similarities between common skin disorders and mpox and the need for professional diagnosis unavoidably impaired the diagnosis of earlier-stage mpox patients and contributed to mpox outbreak. To address the challenge, we proposed "Super Monitoring", a real-time visualization technique employing artificial intelligence (AI) and Internet technology to diagnose earlier-stage mpox cheaply, conveniently, and quickly. Concretely, AI-mediated "Super Monitoring" (mpox-AISM) integrates deep learning models, data augmentation, self-supervised learning, and cloud services. According to publicly accessible datasets, mpox-AISM's Precision, Recall, Specificity, and F1-score in diagnosing mpox reach 99.3%, 94.1%, 99.9%, and 96.6%, respectively, and it achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin. With the Internet and communication terminal, mpox-AISM has the potential to perform real-time and accurate diagnosis for earlier-stage mpox in real-world scenarios, thereby preventing mpox outbreak.

View on arXiv
Comments on this paper