ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10439
32
8
v1v2 (latest)

Stop Words for Processing Software Engineering Documents: Do they Matter?

18 March 2023
Yao-Long Fan
Chetan Arora
Christoph Treude
ArXiv (abs)PDFHTML
Abstract

Stop words, which are considered non-predictive, are often eliminated in natural language processing tasks. However, the definition of uninformative vocabulary is vague, so most algorithms use general knowledge-based stop lists to remove stop words. There is an ongoing debate among academics about the usefulness of stop word elimination, especially in domain-specific settings. In this work, we investigate the usefulness of stop word removal in a software engineering context. To do this, we replicate and experiment with three software engineering research tools from related work. Additionally, we construct a corpus of software engineering domain-related text from 10,000 Stack Overflow questions and identify 200 domain-specific stop words using traditional information-theoretic methods. Our results show that the use of domain-specific stop words significantly improved the performance of research tools compared to the use of a general stop list and that 17 out of 19 evaluation measures showed better performance.

View on arXiv
Comments on this paper