ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14067
11
0

SEAL: Semantic Frame Execution And Localization for Perceiving Afforded Robot Actions

24 March 2023
Cameron Kisailus
Daksh Narang
Matthew P Shannon
Odest Chadwicke Jenkins
ArXivPDFHTML
Abstract

Recent advances in robotic mobile manipulation have spurred the expansion of the operating environment for robots from constrained workspaces to large-scale, human environments. In order to effectively complete tasks in these spaces, robots must be able to perceive, reason, and execute over a diversity of affordances, well beyond simple pick-and-place. We posit the notion of semantic frames provides a compelling representation for robot actions that is amenable to action-focused perception, task-level reasoning, action-level execution, and integration with language. Semantic frames, a product of the linguistics community, define the necessary elements, pre- and post- conditions, and a set of sequential robot actions necessary to successfully execute an action evoked by a verb phrase. In this work, we extend the semantic frame representation for robot manipulation actions and introduce the problem of Semantic Frame Execution And Localization for Perceiving Afforded Robot Actions (SEAL) as a graphical model. For the SEAL problem, we describe our nonparametric Semantic Frame Mapping (SeFM) algorithm for maintaining belief over a finite set of semantic frames as the locations of actions afforded to the robot. We show that language models such as GPT-3 are insufficient to address generalized task execution covered by the SEAL formulation and SeFM provides robots with efficient search strategies and long term memory needed when operating in building-scale environments.

View on arXiv
Comments on this paper