ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14358
8
1

Multi-view knowledge distillation transformer for human action recognition

25 March 2023
Yi Lin
Vincent S. Tseng
    ViT
ArXivPDFHTML
Abstract

Recently, Transformer-based methods have been utilized to improve the performance of human action recognition. However, most of these studies assume that multi-view data is complete, which may not always be the case in real-world scenarios. Therefore, this paper presents a novel Multi-view Knowledge Distillation Transformer (MKDT) framework that consists of a teacher network and a student network. This framework aims to handle incomplete human action problems in real-world applications. Specifically, the multi-view knowledge distillation transformer uses a hierarchical vision transformer with shifted windows to capture more spatial-temporal information. Experimental results demonstrate that our framework outperforms the CNN-based method on three public datasets.

View on arXiv
Comments on this paper