ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.15057
18
1

Towards Unbiased Calibration using Meta-Regularization

27 March 2023
Cheng Wang
Jacek Golebiowski
ArXivPDFHTML
Abstract

Model miscalibration has been frequently identified in modern deep neural networks. Recent work aims to improve model calibration directly through a differentiable calibration proxy. However, the calibration produced is often biased due to the binning mechanism. In this work, we propose to learn better-calibrated models via meta-regularization, which has two components: (1) gamma network (gamma-net), a meta learner that outputs sample-wise gamma values (continuous variable) for Focal loss for regularizing the backbone network; (2) smooth expected calibration error (SECE), a Gaussian-kernel based, unbiased, and differentiable surrogate to ECE that enables the smooth optimization of gamma-Net. We evaluate the effectiveness of the proposed approach in regularizing neural networks towards improved and unbiased calibration on three computer vision datasets. We empirically demonstrate that: (a) learning sample-wise gamma as continuous variables can effectively improve calibration; (b) SECE smoothly optimizes gamma-net towards unbiased and robust calibration with respect to the binning schemes; and (c) the combination of gamma-net and SECE achieves the best calibration performance across various calibration metrics while retaining very competitive predictive performance as compared to multiple recently proposed methods.

View on arXiv
Comments on this paper