ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.17448
16
2

NN-Copula-CD: A Copula-Guided Interpretable Neural Network for Change Detection in Heterogeneous Remote Sensing Images

30 March 2023
Weiming Li
Xueqian Wang
Gang Li
ArXivPDFHTML
Abstract

Change detection (CD) in heterogeneous remote sensing images is a practical and challenging issue for real-life emergencies. In the past decade, the heterogeneous CD problem has significantly benefited from the development of deep neural networks (DNN). However, the data-driven DNNs always perform like a black box where the lack of interpretability limits the trustworthiness and controllability of DNNs in most practical CD applications. As a strong knowledge-driven tool to measure correlation between random variables, Copula theory has been introduced into CD, yet it suffers from non-robust CD performance without manual prior selection for Copula functions. To address the above issues, we propose a knowledge-data-driven heterogeneous CD method (NN-Copula-CD) based on the Copula-guided interpretable neural network. In our NN-Copula-CD, the mathematical characteristics of Copula are designed as the losses to supervise a simple fully connected neural network to learn the correlation between bi-temporal image patches, and then the changed regions are identified via binary classification for the correlation coefficients of all image patch pairs of the bi-temporal images. We conduct in-depth experiments on three datasets with multimodal images (e.g., Optical, SAR, and NIR), where the quantitative results and visualized analysis demonstrate both the effectiveness and interpretability of the proposed NN-Copula-CD.

View on arXiv
Comments on this paper