ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.17783
17
2

Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer

31 March 2023
Yuang Ai
Xiaoqiang Zhou
Huaibo Huang
Lei Zhang
Ran He
ArXivPDFHTML
Abstract

Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR) by accessing both the source and target data. Considering privacy policies or transmission restrictions of source data in practical scenarios, we propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data. SODA-SR leverages the source-trained model to generate refined pseudo-labels for teacher-student learning. To better utilize pseudo-labels, we propose a novel wavelet-based augmentation method, named Wavelet Augmentation Transformer (WAT), which can be flexibly incorporated with existing networks, to implicitly produce useful augmented data. WAT learns low-frequency information of varying levels across diverse samples, which is aggregated efficiently via deformable attention. Furthermore, an uncertainty-aware self-training mechanism is proposed to improve the accuracy of pseudo-labels, with inaccurate predictions being rectified by uncertainty estimation. To acquire better SR results and avoid overfitting pseudo-labels, several regularization losses are proposed to constrain target LR and SR images in the frequency domain. Experiments show that without accessing source data, SODA-SR outperforms state-of-the-art UDA methods in both synthetic→\rightarrow→real and real→\rightarrow→real adaptation settings, and is not constrained by specific network architectures.

View on arXiv
Comments on this paper