ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.17849
15
0

On Rényi Differential Privacy in Statistics-Based Synthetic Data Generation

31 March 2023
Takayuki Miura
Toshiki Shibahara
M. Kii
Atsunori Ichikawa
Juko Yamamoto
Koji Chida
    SyDa
ArXivPDFHTML
Abstract

Privacy protection with synthetic data generation often uses differentially private statistics and model parameters to quantitatively express theoretical security. However, these methods do not take into account privacy protection due to the randomness of data generation. In this paper, we theoretically evaluate R\'{e}nyi differential privacy of the randomness in data generation of a synthetic data generation method that uses the mean vector and the covariance matrix of an original dataset. Specifically, for a fixed α>1\alpha > 1α>1, we show the condition of ε\varepsilonε such that the synthetic data generation satisfies (α,ε)(\alpha, \varepsilon)(α,ε)-R\'{e}nyi differential privacy under a bounded neighboring condition and an unbounded neighboring condition, respectively. In particular, under the unbounded condition, when the size of the original dataset and synthetic datase is 10 million, the mechanism satisfies (4,0.576)(4, 0.576)(4,0.576)-R\'{e}nyi differential privacy. We also show that when we translate it into the traditional (ε,δ)(\varepsilon, \delta)(ε,δ)-differential privacy, the mechanism satisfies (4.00,10−10)(4.00, 10^{-10})(4.00,10−10)-differential privacy.

View on arXiv
Comments on this paper