ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.00470
36
0
v1v2 (latest)

Local approximations of inverse block Toeplitz matrices and Baxter-type theorems for long-memory processes

2 April 2023
A. Inoue
Junho Yang
ArXiv (abs)PDFHTML
Abstract

We derive sharp approximation error bounds for inverse block Toeplitz matrices associated with multivariate long-memory stationary processes. The error bounds are evaluated for both column and row sums. These results are used to prove the strong convergence of the solutions of general block Toeplitz systems. A crucial part of the proof is to bound sums consisting of the Fourier coefficients of the phase function attached to the singular symbol of the Toeplitz matrices.

View on arXiv
Comments on this paper