ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.00649
16
7

Multilingual Word Error Rate Estimation: e-WER3

2 April 2023
Shammur A. Chowdhury
Ahmed M. Ali
ArXivPDFHTML
Abstract

The success of the multilingual automatic speech recognition systems empowered many voice-driven applications. However, measuring the performance of such systems remains a major challenge, due to its dependency on manually transcribed speech data in both mono- and multilingual scenarios. In this paper, we propose a novel multilingual framework -- eWER3 -- jointly trained on acoustic and lexical representation to estimate word error rate. We demonstrate the effectiveness of eWER3 to (i) predict WER without using any internal states from the ASR and (ii) use the multilingual shared latent space to push the performance of the close-related languages. We show our proposed multilingual model outperforms the previous monolingual word error rate estimation method (eWER2) by an absolute 9\% increase in Pearson correlation coefficient (PCC), with better overall estimation between the predicted and reference WER.

View on arXiv
Comments on this paper